import { State } from '@pixi/core';
import { Point, Polygon } from '@pixi/math';
import type { BLEND_MODES } from '@pixi/constants';
import { DRAW_MODES } from '@pixi/constants';
import { Container } from '@pixi/display';
import { settings } from '@pixi/settings';
import { MeshBatchUvs } from './MeshBatchUvs';
import type { MeshMaterial } from './MeshMaterial';
import type { IDestroyOptions } from '@pixi/display';
import type { Texture, Renderer, Geometry, Buffer, Shader } from '@pixi/core';
import type { IPointData } from '@pixi/math';
const tempPoint = new Point();
const tempPolygon = new Polygon();
// eslint-disable-next-line @typescript-eslint/no-empty-interface
export interface Mesh extends GlobalMixins.Mesh {}
/**
* Base mesh class.
*
* This class empowers you to have maximum flexibility to render any kind of WebGL visuals you can think of.
* This class assumes a certain level of WebGL knowledge.
* If you know a bit this should abstract enough away to make your life easier!
*
* Pretty much ALL WebGL can be broken down into the following:
* - Geometry - The structure and data for the mesh. This can include anything from positions, uvs, normals, colors etc..
* - Shader - This is the shader that PixiJS will render the geometry with (attributes in the shader must match the geometry)
* - State - This is the state of WebGL required to render the mesh.
*
* Through a combination of the above elements you can render anything you want, 2D or 3D!
* @memberof PIXI
*/
export class Mesh<T extends Shader = MeshMaterial> extends Container
{
/**
* Represents the vertex and fragment shaders that processes the geometry and runs on the GPU.
* Can be shared between multiple Mesh objects.
* @type {PIXI.Shader|PIXI.MeshMaterial}
*/
public shader: T;
/**
* Represents the WebGL state the Mesh required to render, excludes shader and geometry. E.g.,
* blend mode, culling, depth testing, direction of rendering triangles, backface, etc.
*/
public state: State;
/** The way the Mesh should be drawn, can be any of the PIXI.DRAW_MODES constants. */
public drawMode: DRAW_MODES;
/**
* Typically the index of the IndexBuffer where to start drawing.
* @default 0
*/
public start: number;
/**
* How much of the geometry to draw, by default `0` renders everything.
* @default 0
*/
public size: number;
private _geometry: Geometry;
/** This is the caching layer used by the batcher. */
private vertexData: Float32Array;
/** If geometry is changed used to decide to re-transform the vertexData. */
private vertexDirty: number;
private _transformID: number;
/** Internal roundPixels field. */
private _roundPixels: boolean;
/** Batched UV's are cached for atlas textures. */
private batchUvs: MeshBatchUvs;
// Internal-only properties
/**
* These are used as easy access for batching.
* @private
*/
uvs: Float32Array;
/**
* These are used as easy access for batching.
* @private
*/
indices: Uint16Array;
_tintRGB: number;
_texture: Texture;
/**
* @param geometry - The geometry the mesh will use.
* @param {PIXI.MeshMaterial} shader - The shader the mesh will use.
* @param state - The state that the WebGL context is required to be in to render the mesh
* if no state is provided, uses PIXI.State.for2d to create a 2D state for PixiJS.
* @param drawMode - The drawMode, can be any of the PIXI.DRAW_MODES constants.
*/
constructor(geometry: Geometry, shader: T, state?: State, drawMode: DRAW_MODES = DRAW_MODES.TRIANGLES)
{
super();
this.geometry = geometry;
this.shader = shader;
this.state = state || State.for2d();
this.drawMode = drawMode;
this.start = 0;
this.size = 0;
this.uvs = null;
this.indices = null;
this.vertexData = new Float32Array(1);
this.vertexDirty = -1;
this._transformID = -1;
this._roundPixels = settings.ROUND_PIXELS;
this.batchUvs = null;
}
/**
* Includes vertex positions, face indices, normals, colors, UVs, and
* custom attributes within buffers, reducing the cost of passing all
* this data to the GPU. Can be shared between multiple Mesh objects.
*/
get geometry(): Geometry
{
return this._geometry;
}
set geometry(value: Geometry)
{
if (this._geometry === value)
{
return;
}
if (this._geometry)
{
this._geometry.refCount--;
if (this._geometry.refCount === 0)
{
this._geometry.dispose();
}
}
this._geometry = value;
if (this._geometry)
{
this._geometry.refCount++;
}
this.vertexDirty = -1;
}
/**
* To change mesh uv's, change its uvBuffer data and increment its _updateID.
* @readonly
*/
get uvBuffer(): Buffer
{
return this.geometry.buffers[1];
}
/**
* To change mesh vertices, change its uvBuffer data and increment its _updateID.
* Incrementing _updateID is optional because most of Mesh objects do it anyway.
* @readonly
*/
get verticesBuffer(): Buffer
{
return this.geometry.buffers[0];
}
/** Alias for PIXI.Mesh#shader. */
set material(value: T)
{
this.shader = value;
}
get material(): T
{
return this.shader;
}
/**
* The blend mode to be applied to the Mesh. Apply a value of
* `PIXI.BLEND_MODES.NORMAL` to reset the blend mode.
* @default PIXI.BLEND_MODES.NORMAL;
*/
set blendMode(value: BLEND_MODES)
{
this.state.blendMode = value;
}
get blendMode(): BLEND_MODES
{
return this.state.blendMode;
}
/**
* If true PixiJS will Math.floor() x/y values when rendering, stopping pixel interpolation.
* Advantages can include sharper image quality (like text) and faster rendering on canvas.
* The main disadvantage is movement of objects may appear less smooth.
* To set the global default, change PIXI.settings.ROUND_PIXELS
* @default false
*/
set roundPixels(value: boolean)
{
if (this._roundPixels !== value)
{
this._transformID = -1;
}
this._roundPixels = value;
}
get roundPixels(): boolean
{
return this._roundPixels;
}
/**
* The multiply tint applied to the Mesh. This is a hex value. A value of
* `0xFFFFFF` will remove any tint effect.
*
* Null for non-MeshMaterial shaders
* @default 0xFFFFFF
*/
get tint(): number
{
return 'tint' in this.shader ? (this.shader as unknown as MeshMaterial).tint : null;
}
set tint(value: number)
{
(this.shader as unknown as MeshMaterial).tint = value;
}
/** The texture that the Mesh uses. Null for non-MeshMaterial shaders */
get texture(): Texture
{
return 'texture' in this.shader ? (this.shader as unknown as MeshMaterial).texture : null;
}
set texture(value: Texture)
{
(this.shader as unknown as MeshMaterial).texture = value;
}
/**
* Standard renderer draw.
* @param renderer - Instance to renderer.
*/
protected _render(renderer: Renderer): void
{
// set properties for batching..
// TODO could use a different way to grab verts?
const vertices = this.geometry.buffers[0].data;
const shader = this.shader as unknown as MeshMaterial;
// TODO benchmark check for attribute size..
if (
shader.batchable
&& this.drawMode === DRAW_MODES.TRIANGLES
&& vertices.length < Mesh.BATCHABLE_SIZE * 2
)
{
this._renderToBatch(renderer);
}
else
{
this._renderDefault(renderer);
}
}
/**
* Standard non-batching way of rendering.
* @param renderer - Instance to renderer.
*/
protected _renderDefault(renderer: Renderer): void
{
const shader = this.shader as unknown as MeshMaterial;
shader.alpha = this.worldAlpha;
if (shader.update)
{
shader.update();
}
renderer.batch.flush();
// bind and sync uniforms..
shader.uniforms.translationMatrix = this.transform.worldTransform.toArray(true);
renderer.shader.bind(shader);
// set state..
renderer.state.set(this.state);
// bind the geometry...
renderer.geometry.bind(this.geometry, shader);
// then render it
renderer.geometry.draw(this.drawMode, this.size, this.start, this.geometry.instanceCount);
}
/**
* Rendering by using the Batch system.
* @param renderer - Instance to renderer.
*/
protected _renderToBatch(renderer: Renderer): void
{
const geometry = this.geometry;
const shader = this.shader as unknown as MeshMaterial;
if (shader.uvMatrix)
{
shader.uvMatrix.update();
this.calculateUvs();
}
// set properties for batching..
this.calculateVertices();
this.indices = geometry.indexBuffer.data as Uint16Array;
this._tintRGB = shader._tintRGB;
this._texture = shader.texture;
const pluginName = (this.material as unknown as MeshMaterial).pluginName;
renderer.batch.setObjectRenderer(renderer.plugins[pluginName]);
renderer.plugins[pluginName].render(this);
}
/** Updates vertexData field based on transform and vertices. */
public calculateVertices(): void
{
const geometry = this.geometry;
const verticesBuffer = geometry.buffers[0];
const vertices = verticesBuffer.data;
const vertexDirtyId = verticesBuffer._updateID;
if (vertexDirtyId === this.vertexDirty && this._transformID === this.transform._worldID)
{
return;
}
this._transformID = this.transform._worldID;
if (this.vertexData.length !== vertices.length)
{
this.vertexData = new Float32Array(vertices.length);
}
const wt = this.transform.worldTransform;
const a = wt.a;
const b = wt.b;
const c = wt.c;
const d = wt.d;
const tx = wt.tx;
const ty = wt.ty;
const vertexData = this.vertexData;
for (let i = 0; i < vertexData.length / 2; i++)
{
const x = vertices[(i * 2)];
const y = vertices[(i * 2) + 1];
vertexData[(i * 2)] = (a * x) + (c * y) + tx;
vertexData[(i * 2) + 1] = (b * x) + (d * y) + ty;
}
if (this._roundPixels)
{
const resolution = settings.RESOLUTION;
for (let i = 0; i < vertexData.length; ++i)
{
vertexData[i] = Math.round((vertexData[i] * resolution | 0) / resolution);
}
}
this.vertexDirty = vertexDirtyId;
}
/** Updates uv field based on from geometry uv's or batchUvs. */
public calculateUvs(): void
{
const geomUvs = this.geometry.buffers[1];
const shader = this.shader as unknown as MeshMaterial;
if (!shader.uvMatrix.isSimple)
{
if (!this.batchUvs)
{
this.batchUvs = new MeshBatchUvs(geomUvs, shader.uvMatrix);
}
this.batchUvs.update();
this.uvs = this.batchUvs.data;
}
else
{
this.uvs = geomUvs.data as Float32Array;
}
}
/**
* Updates the bounds of the mesh as a rectangle. The bounds calculation takes the worldTransform into account.
* there must be a aVertexPosition attribute present in the geometry for bounds to be calculated correctly.
*/
protected _calculateBounds(): void
{
this.calculateVertices();
this._bounds.addVertexData(this.vertexData, 0, this.vertexData.length);
}
/**
* Tests if a point is inside this mesh. Works only for PIXI.DRAW_MODES.TRIANGLES.
* @param point - The point to test.
* @returns - The result of the test.
*/
public containsPoint(point: IPointData): boolean
{
if (!this.getBounds().contains(point.x, point.y))
{
return false;
}
this.worldTransform.applyInverse(point, tempPoint);
const vertices = this.geometry.getBuffer('aVertexPosition').data;
const points = tempPolygon.points;
const indices = this.geometry.getIndex().data;
const len = indices.length;
const step = this.drawMode === 4 ? 3 : 1;
for (let i = 0; i + 2 < len; i += step)
{
const ind0 = indices[i] * 2;
const ind1 = indices[i + 1] * 2;
const ind2 = indices[i + 2] * 2;
points[0] = vertices[ind0];
points[1] = vertices[ind0 + 1];
points[2] = vertices[ind1];
points[3] = vertices[ind1 + 1];
points[4] = vertices[ind2];
points[5] = vertices[ind2 + 1];
if (tempPolygon.contains(tempPoint.x, tempPoint.y))
{
return true;
}
}
return false;
}
public destroy(options?: IDestroyOptions | boolean): void
{
super.destroy(options);
if (this._cachedTexture)
{
this._cachedTexture.destroy();
this._cachedTexture = null;
}
this.geometry = null;
this.shader = null;
this.state = null;
this.uvs = null;
this.indices = null;
this.vertexData = null;
}
/** The maximum number of vertices to consider batchable. Generally, the complexity of the geometry. */
public static BATCHABLE_SIZE = 100;
}